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In this paper, we present a two-step, component-wise TVD scheme for nonlinear,
hyperbolic conservation laws, which is obtained by combining the schemes of Mac
Cormack and Warming-Beam. The scheme does not necessitate the characteristic
decompositions of the usual TVD schemes. It employs component-wise limiting;
hence the programming is much simpler, especially for complicated coupled sys-
tems. For Euler systems of conservation laws, we found the scheme is two times
faster in computation than the usual TVD schemes based on field-by-field decom-
position limiting. A lot of numerical results show primarily the value of the new
method. c© 2001 Academic Press
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1. INTRODUCTION

Harten’s concept of total variation diminishing (TVD) [1] initiated a new era of high-
order and high-resolution schemes for hyperbolic conservation laws. TVD schemes are a
kind of monotonicity preserving schemes by adding and limiting a modified, high-order
antidiffusion term to a low-order (e.g., first-order upwind) numerical flux. They produce a
high-resolution of discontinuities while retaining high-order accuracy in smooth regions.

Generally for the scalar case, the TVD technique is elegant and amenable to rigorous
analysis. However, when applied to systems of conservation laws, TVD schemes are of-
ten built upon field-by-field decompositions. One extends the scalar scheme to systems of
conservation laws by applying it “scalarly” to each of the (appropriately linearized) char-
acteristic variables. However, this complicates the programming, increases the CPU time,
and does not perform as well as the scalar case.
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Early shock capturing schemes for hyperbolic conservation laws (e.g., artificial viscosity
methods) were mainly component-wise. The advantages of component-wise schemes are
apparent: easier programming, faster computation, and wider applicability for complicated
systems. Profited from a TVD Runge–Kutta type of time discretizations, the ENO schemes
[11–14] had tried component-wise differencing which is obviously more efficient than
characteristic-based TVD schemes.

We note that, for the custom, second-order, finite difference schemes of hyperbolic equa-
tions, oscillations of a central scheme and a bias (upwind) scheme always take place at
opposite sides of a discontinuity. So spurious oscillations should vanish via some selective
employments of the second-order schemes. Actually a TVD scheme often contains a switch
that changes the scheme from one to another when some critical conditions are present.
It is also known that a multi-step high-order scheme shares the merits of not using the
Jacobian matrix. Naturally we propose a two-step, component-wise TVD scheme based on
the well-known schemes of Mac Cormack and Warming-Beam.

The purpose of this paper is to show the simplicity and practicability of the new scheme.
In the next section we describe this second-order (perhaps first-order at extrema), two-
step component-wise, point-value version, TVD scheme. Then we exhibit some numerical
results for nonlinear hyperbolic conservation laws.

2. TWO-STEP, COMPONENT-WISE TVD SCHEMES

2.1. Review of the Usual TVD Limiting

As preliminaries we shall first review the limiting procedure of the usual TVD schemes.
Two versions of TVD techniques may be observed: TVD upwinding [2–7] and the symmetric
TVD schemes [19]. Here we consider the former. For the linear scalar equation

ut + aux = 0, a > 0. (2.1)

The second-order Lax–Wendroff scheme may be written as

un+1
j = un

j − ν
(
un

j − un
j−1

)− 1

2
ν(1− ν)(un

j+1− 2un
j + un

j−1

)
, (2.2)

whereν = a1t/1x is theCFL number.
The scheme can be regarded as a first-order upwind scheme with an additional second-

order antidiffusive term. Since the Lax–Wendroff scheme is not TVD, Sweby [2] modified
it by adding a limiter to the second-order term
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j −
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) [
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2
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where the slope ratio is defined by

r j+1/2 =
un

j − un
j−1

un
j+1− un

j

. (2.4)

Thereby the sufficient condition (see [1]) of (2.3) to be TVD becomes

− 2
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ϕ
(
r j+1/2

)
r j+1/2

− ϕ(r j−1/2
) ≤ 2

ν
. (2.5)
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More rigidly, if theCFL numberν is not fixed (underCFL condition 0≤ ν ≤ 1), then the
TVD condition reduces to ∣∣∣∣∣ϕ

(
r j+1/2

)
r j+1/2

− ϕ(r j−1/2
)∣∣∣∣∣ ≤ 2. (2.6)

When a limiterϕ(r ) satisfying (2.5) is applied to (2.3), a second-order oscillation-free TVD
scheme can be easily obtained.

For nonlinear scalar case

ut + f (u)x = 0, (2.7)

we shall always approximate it by the following high-order conservative scheme

un+1
j = un

j − λ
(
ĥ j+1/2− ĥ j−1/2

)
. (2.8)

Hereλ = 1t/1x is the uniform mesh ratio;̂h j+1/2 is a consistent, high-order numerical
flux which can be also regarded as the numerical flux of a first-order upwind scheme with
an additional higher order modified term; i.e.,

ĥ j+1/2 = f̂ j+1/2+
1

2
ĝj+1/2. (2.9)

Sweby [2] introduced flux TVD limiters for both positive and negative fluxes. The mod-
ified Lax–Wendroff flux for (2.8) may be written as

ĥ
MLW
j+1/2 = f̂ j+1/2+

1

2

[
ϕ
(

r+LW
j+1/2

)
ĝ+LW

j+1/2− ϕ
(

r−LW
j+1/2

)
ĝ−LW

j+1/2

]
, (2.10)

where

ĝ+LW
j+1/2 =

(
1− λa+j+1/2

)
( f +j+1− f +j ),

(2.11)
ĝ−LW

j+1/2 =
(
1+ λa−j+1/2

)
( f −j+1− f −j ),

and the slope ratios should be redefined by

r+LW
j+1/2 = ĝ+LW

j−1/2

/
ĝ+LW

j+1/2, r−LW
j+1/2 = ĝ−LW

j+3/2

/
ĝ−LW

j+1/2. (2.12)

Here an appropriate flux splitting is needed that satisfies

f (u) = f +(u)+ f −(u),
(2.13)

a+ = d f+(u)
du

≥ 0, a− = d f−(u)
du

≤ 0,

and the flux of the first-order upwind scheme takes the form

f̂ j+1/2 = f +j + f −j+1. (2.14)

Clearly for a system of conservation laws, the set of eigenvalues of the Jacobian matrix
is required, and field-by-field decompositions are necessary in order to apply the TVD
algorithms scalarly to each of the characteristic equations.
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2.2. Modified Mac Cormack Scheme

We have known the two-step schemes of Mac Cormack and Warming-Beam, which were
originally devised for nonlinear cases and share the merits of not requiring Jacobian matrices
for systems of conservation laws. Now we turn to conceive a new component-wise TVD
technique by using these two well-known schemes.

The Mac Cormack scheme has two forms: one takes a forward difference in the predictor
and a backward difference in the corrector; the other takes a backward difference in the
predictor and a forward difference in the corrector. This enables us always to choose the
first-order upwind scheme for the common predictor of the schemes of Mac Cormack and
Warming-Beam.

Consider again the nonlinear scalar Eq. (2.7), for right-moving waves, i.e.,f − ≡ 0 in
(2.13), we use the left upwind predictor for the above two schemes

ũn+1
j = un

j − λ∇ f n
j , (2.15)

then their correctors have the following forms, respectively,
MC+

un+1
j = 1

2

(
un

j + ũn+1
j

)− λ
2
1 f̃

n+1
j , (2.16a)

WB+
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j = 1

2

(
un

j + ũn+1
j

)− λ
2
∇2 f n

j −
λ

2
∇ f̃

n+1
j , (2.16b)

where1(·) j = (·) j+1− (·) j ,∇(·) j = (·) j − (·) j−1. For linear case (2.1),f n
j =aun

j , f̃
n+1
j =

aũn+1
j , it is easily verified that the Mac Cormack scheme (2.15) with (2.16a) is identical to

the Lax–Wendroff scheme (2.2).
Likewise, for left-moving waves, i.e.,f + ≡ 0 in (2.13), we use the right upwind predictor

for both the schemes of Mac Cormack and Warming-Beam

ũn+1
j = un

j − λ1 f n
j , (2.17)

then their correctors have the following forms, respectively,
MC−

un+1
j = 1

2

(
un

j + ũn+1
j

)− λ
2
∇ f̃

n+1
j , (2.18a)

WB−

un+1
j = 1

2

(
un

j + ũn+1
j

)+ λ
2
12 f n

j −
λ

2
1 f̃

n+1
j . (2.18b)

When both left-moving and right-moving waves are coexisting, a flux splitting of (2.13)
is also needed. Substitute the predictors of (2.15) and (2.17) forũn+1

j in their relevant cor-
rectors, and rewrite the upward schemes in the conservative form of (2.8); then we get an
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extremely simple form of the numerical fluxes of the schemes for a general nonlinear scalar
conservation law

ĥ
MC
j+1/2 = f̂ j+1/2+

1

2

[
ĝ+MC

j+1/2− ĝ−MC
j+1/2

]
, (2.19a)

ĥ
WB
j+1/2 = f̂ j+1/2+

1

2

[
ĝ+WB

j+1/2− ĝ−WB
j+1/2

]
, (2.19b)

where

ĝ+MC
j+1/2 = f̃

+
j+1− f +j , ĝ−MC

j+1/2 = f −j+1− f̃
−
j , (2.20a)

ĝ+WB
j+1/2 = f̃

+
j − f +j−1, ĝ−WB

j+1/2 = f −j+2− f̃
−
j+1. (2.20b)

It is obvious that̂g+WB
j+1/2 = ĝ+MC

j−1/2, ĝ
−WB
j+1/2 = ĝ−MC

j−1/2, andĥWB
j+1/2 = ĥMC

j−1/2. Following the
flux limiting procedure of the modified Lax–Wendroff scheme in Sec. 2.1, by adding a pure
flux limiter to the second-order antidiffusive term of (2.19), we get a modified second-order
predictor-corrector scheme, namely the modified Mac Cormack scheme

ũn+1
j = un

j − λ
(

f̂ j+1/2− f̂ j−1/2

)
, (2.21a)

un+1
j = un

j − λ
(

ĥ
MMC
j+1/2− ĥ

MMC
j−1/2

)
, (2.21b)

ĥ
MMC
j+1/2 = f̂ j+1/2+

1

2

[
ϕ
(

r+MC
j+1/2

)
ĝ+MC

j+1/2− ϕ
(

r−MC
j+1/2

)
ĝ−MC

j+1/2

]
, (2.21c)

where f̂ j+1/2 is defined by (2.14), and the slope ratio is redefined by

r+MC
j+1/2 = ĝ+MC

j−1/2

/
ĝ+MC

j+1/2, r−MC
j+1/2 = ĝ−MC

j+3/2

/
ĝ−MC

j+1/2. (2.22)

Obviouslyϕ(r ) = 1 or ϕ(r ) = r switches the formulae of (2.21) to the Mac Cormack
scheme and the Warming-Beam scheme, respectively.

2.3. Component-Wise TVD Procedure

For the modified Mac Cormack scheme of (2.21), all the negative flux terms vanish in
the linear case of (2.1), and then the scheme degenerates to the formula of (2.3) which is
absolutely TVD under the condition of (2.5). However, for the nonlinear case, we may as
well refer to the resulting scheme as a two-step TVD scheme whenever a pure flux limiter
ϕ(r ) bounded by the usual TVD constraint of (2.6) is applied to the modified Mac Cormack
scheme; although it is impossible to be abstractly proved up to now.

The two-step TVD scheme does not need to use the set of eigenvalues of the Jacobian
matrix, but an appropriate flux splitting is still required for its upwinding procedure. In this
paper we choose the simplest and inexpensive global Lax–Friedrichs flux splitting [13]

f ±j (u) =
1

2
( f (u j )± αu j ), (2.23a)
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whereα, also required by theCFL number, is taken as the maximum eigenvalue off (u)
over the relevant range ofu

α = max
j
| f ′(u j )|. (2.23b)

Of course, a less dissipative local Lax–Friedrichs splitting is also available

f ±j (u) =
1

2
( f (u j )± α j u j ), (2.24a)

where

α j = | f ′(u j )|. (2.24b)

But in our experiences, we found it not robust enough compared with the global algorithm.
The one-dimensional Euler system may be written as

Ut + F(U )x = 0, (2.25)

where

U = (ρ, ρu, E)T , (2.26a)

F(U ) = (ρu, ρu2+ P, u(E + P))T . (2.26b)

Hereρ is the density,u is the velocity,E is the total energy, andP is the pressure. Then the
parameterα in the global Lax–Friedrichs flux splitting can be taken as the maximum speed
of entropy waves

α = max
j
(|u j | + cj ), (2.27)

wherecj is the local sound speed. For the Euler system, there are many other flux splittings
(e.g., van Leer [18]). In view of monotonicity, robustness, and applicability to complicated
equation of state, we prefer the global Lax–Friedrichs flux (2.23a) and (2.27). Under these
circumstances, we then approximate the Euler system via a component-by-component TVD
limiting without any difficulties.

Many TVD limiters were well investigated in the literatures [2–7]. Usually a compressive
limiter (e.g., superbee [3]) gives excellent resolution of discontinuities but simultaneously
turns smooth data into staircase. Comparatively a harmonic limiter is more reliable espe-
cially for the nonlinear case. We noted three of such limiters—Roe’s symmetric limiterϕH

[4], Hartwich’s antisymmetric limiterϕA [5], and the minmod limiterϕM

ϕH (r ) =
{

r, |r | < 1,
1, otherwise,

(2.28a)

ϕA(r ) = sign(r ) ·min(|r |, 1), (2.28b)

ϕM(r ) = Minmod(r, 1). (2.28c)
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The three limiters differ only when the slope ratior turns negative, but we can hardly see
their differences in numerical tests even near extrema (i.e.,r < 0). Practically the limiter
ϕH is identical to the minimum of the absolute value function used in ENO schemes

M(a, b) =
{

a, |a| < |b|;
b, otherwise.

(2.29)

For the sake of symmetry and comparing with ENO schemes, we choose the limiterϕH for
all the calculations of the present paper.

3. NUMERICAL RESULTS

Since the scheme degenerates to a usual TVD scheme in the linear case, we apply it
directly to nonlinear conservation laws.

3.1. Single Conservation Law

EXAMPLE 1. Initial value problem for Burgers equation

ut +
(

u2

2

)
x

= 0,

(3.1)

u(x, 0) =

−1, x < −0.5;
1, −0.5≤ x ≤ 0.5;
−1, x > 0.5.

Its solution consists of a centered rarefaction wave that contains a sonic point atx = −0.5
and a stationary shock wave located atx = 0.5. Many conventional TVD schemes (if
without any entropy fix added) would substitute the rarefaction wave by an nonphysical
stationary expansion shock [16]. Figure 1 shows the numerical solutions obtained by using
our component-wise TVD scheme. We can see that the centered rarefaction wave converges
to the correct entropy solution and the stationary shock is well resolved.

3.2. Euler System in One Dimension

Next we consider the one-dimensional Euler equations for a polytropic ideal gas (perfect
gas) with the equation of state

P = (γ − 1)ρε, (3.2)

whereε = E
ρ
− 1

2u2 is the internal energy per unit mass andγ = 1.4. We then applied the
component-wise TVD algorithm scalarly to each of the three conservation equations.

EXAMPLE 2. Low density problem [8] with the initial data

(ρL , uL , PL) = (1,−2, 0.4), x ≤ 0;
(ρR, uR, PR) = (1, 2, 0.4), x > 0.

The solution of this problem consists of two strong rarefaction waves moving in opposite
directions. The numerical results att = 0.1 are depicted in Fig. 2. Since the energy of
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FIG. 1. Approximations of the component-wise TVD scheme to a solution of Burgers equation containing a
transonic shock and a transonic rarefaction.dx = 1/50,CFL= 0.8, t = 0.2.

the flow is largely kinetic, many conservative differencing schemes may fail by predicting
nonphysical states with negative density or internal energy (see [8]). In Fig. 2 we can see
that our scheme solves this problem without any difficulties.

EXAMPLE 3. Sod’s shock tube problem with the initial data

(ρL , uL , PL) = (1, 0, 1), x ≤ 0;
(ρR, uR, PR) = (0.125, 0, 0.1), x > 0.

Figure 3 shows the numerical results compared with the exact solution (solid lines) at
t = 2.5. We use 100 grid points on the domain [−5, 5] with CFL= 0.8. In the figure, the
results of the second-order, component-wise, efficient ENO schemes [13] are also shown
(solid diamonds); the open circles are of the present scheme. It is found that shocks are
captured sharply by the present scheme without any oscillations though the contact discon-
tinuity is somewhat dissipative.

EXAMPLE 4. Shu–Osher’s problem of shock entropy wave interactions [11] with the
following initial conditions:

ρ = 3.85714, u = 2.629369, P = 10.33333, x ≤ −4;
ρ = 1+ 0.2 sin(5x), u = 0, P = 1, x > −4.

The mean flow of the problem is a pure right moving Mach 3 shock. With a small
disturbance of sine waves coupled in density, the flow field brings about both shocks
and complicated smooth features coexisting. We require 200 grid points per wavelength
with CFL= 0.8. Figure 4 shows the numerical results of density compared with the ex-
act solution (solid lines) att = 1.8. Figure 4 (top) is again the results of the second-order,
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FIG. 2. Low density problem with component-wise TVD, 100 points,CFL= 0.8, t = 0.1, (top) density,
(middle) momentum, (bottom) internal energy.
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FIG. 3. Sod shock tube problem with component-wise TVD (the solid diamonds are of the second-order
component-wise ENO scheme), 100 points,CFL= 0.8, t = 2.5, (top) density, (middle) velocity, (bottom)
pressure.
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FIG. 4. Shock entropy wave interactions problem, 200 points per wavelength,CFL= 0.8, t = 1.8, solid lines
are exact solution of density, (top) second-order component-wise ENO, (bottom) component-wise TVD.

component-wise ENO schemes, and Fig. 4 (bottom) is of the present scheme. It is gratifying
to see that both shocks and fine structures of smooth regions are resolved very well.

From Figs. 3 and 4, we find that the present, component-wise TVD scheme is less
dissipative than the ENO schemes under the same circumstances. This reflects the superiority
of the Mac Cormack-type schemes.

EXAMPLE 5. Lax’s shock tube problem: Initial data are

(ρL , uL , PL) = (0.445, 0.698, 3.528), x ≤ 0;
(ρR, uR, PR) = (0.5, 0, 0.571), x > 0.

Figure 5 shows the numerical results compared with the exact solution (solid lines) at
t = 1.5. We used 200 grid points on the domain [−5, 5] with CFL= 0.8. This time we
compared our component-wise technique with the field-by-field decomposition limiting. In
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FIG. 5. Lax shock tube problem with component-wise TVD (the solid diamonds are of the second-order
characteristic-based TVD scheme), 200 points,CFL= 0.8, t = 1.5, (top) density, (middle) velocity, (bottom)
pressure.
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FIG. 6. Two interacting blast wave problem, 800 points,CFL= 0.8, t = 0.038, solid lines are the exact
solution, the solid diamonds are of van Leer flux splitting, and the open circles are of the local Lax–Friedrichs
flux splitting.

the figure, we show the results of the conventional second-order TVD scheme based on the
Roe solver (also with the Roe’s symmetric limiterϕH ). The present component-wise TVD
scheme is a bit more dissipative than the characteristic-based TVD scheme. But the latter
costs fully twice the computing time of our method.

EXAMPLE 6. Two interacting blast waves: The initial data are

(ρ, u, P) =

(1, 0, 1000), 0≤ x ≤ 0.1;
(1, 0, 0.01), 0.1< x < 0.9;
(1, 0, 100), 0.9≤ x ≤ 1.

Reflecting boundary conditions are applied at both ends. In Fig. 6 we show the numerical
results of the component-wise TVD scheme using the local Lax–Friedrichs flux (2.24) and
van Leer flux [18], respectively. It is found that the van Leer flux is less dissipative than the
local Lax–Friedrichs flux in this example. Showing this example may inspire the reader to
explore better forms of flux splitting.

3.3. Euler System in Two Dimensions

The next two examples are of two-dimensional Euler systems. We extend the component-
wise TVD scheme by the method of fractional steps or time splitting.

EXAMPLE 7. Forward facing step problem: It has been carefully examined in [9] and is
acknowledged as a standard test case for high-resolution schemes in two-dimensional space.
The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units
high and is located 0.6 length units from the left-hand end of the tunnel. A right-moving
Mach 3 flow is continuously fed from the entrance (left-hand end). An assumption of a
nearly steady flow in the region near the corner is applied (see [9] and [16] for details). In
Fig. 7 we present the numerical results of the new TVD scheme with 240× 80 grid points.
We can see that both strong shocks and strong centered rarefaction waves are resolved very
well.
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FIG. 7. Flow past a forword facing step with component-wise TVD, 30 contours of density from 0.434 to
6.417.1x = 1y = 1/80,CFL= 0.8, t = 4.

EXAMPLE 8. Double Mach reflection problem: This is again a standard test case for
high-resolution schemes. A Mach 10 planar air shock is incident on an oblique wedge
at a 60◦ angle. The reflecting wall of the wedge lies at the bottom of the computational
domain starting fromx = 1/6. A detailed description of this problem can be found in [9].
Figure 8 (top) shows quite pleasing results of the present component-wise TVD scheme
with 480× 120 grid points in the domain: [0, 4]× [0, 1].

EXAMPLE 9. Double Mach reflection in real gas: Here all conditions are the same as
those in Example 8 except that the polytropic ideal gas is changed to the two-molecular
vibrating gas (see [15]). The equation of state becomes

P = rρT(ε), (3.3)

whereε is the specific internal energy and the temperatureT is given by the implicit
expression

ε = Ctr
ν T + α2vib

exp(2vib/T)− 1
, (3.4)

with r = 287.086J · kg−1 · K−1,Ctr
ν = r/(γtr − 1), γtr = 1.4,2vib = 103K , andα = r .

A strict field-by-field decomposition is impossible for this complicated coupled Euler
system. But our component-wise TVD algorithm has no difficulty solving this problem.
Figure 8 (middle & bottom) shows the numerical results of this real gas model compared with
that of the perfect gas model. 960× 240 grid points are used in the domain: [0, 4]× [0, 1].
We can see that the main shock is closer to the bottom boundary and the shock below the
triple point bends.

4. DISCUSSION AND CONCLUSIONS

Through the combination of the Mac Cormack scheme and the Warming-Beam scheme,
we propose a two-step, component-wise TVD scheme for nonlinear conservation laws. The
performances of the new scheme are quite pleasing on a lot of numerical experiments.

The two-step scheme employs component-wise limiting and takes the predictor of the
first-order upwinding; hence it is more economical in computation. For the approximations
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FIG. 8. Double Mach reflection with component-wise TVD, 30 contours of density,CFL= 0.8, t = 0.2. (top)
perfect gas,1x = 1y = 1/120, density from 1.4 to 20.64; (middle) perfect gas,1x = 1y = 1/240, density from
1.4 to 21.63; (bottom) real gas,1x = 1y = 1/240, density from 1.4 to 31.22.

to Euler systems, we found the scheme is two times faster than the usual TVD schemes
based on field-by-field decomposition limiting; moreover, we found the scheme runs even
a bit faster than the second-order, component-wise ENO schemes. We expect that higher-
order multi-step TVD schemes of this kind would fully unfold their advantages of lower
computational costs.

The scheme does not necessiate the characteristic decompositions; hence its programming
is very simple. The approximations to a real gas system show only a fraction of its abilities
to handle with complicated coupled systems.

Although the scheme is second-order accurate (first-order near extrema), it exhibits even
higher accuracy over the same order component-wise ENO schemes. This reflects the
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superiority of the Mac Cormack-type schemes. Of course, the two-step, component-wise
TVD scheme will perform better if a better component-wise flux is devised which is closer
to that of the field-by-field decomposition.
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